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13C NMR STUDIES OF THE INTERACTION
OF GOLD(I) THIOMALATE
WITH 6-MERCAPTOPURINE
AND ITS DERIVATIVES

SAEED AHMAD and ANVARHUSEIN A. ISAB*

Department of Chemistry, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia

( Received 21 June 2000)

The interaction of gold(I) thiomalate, [Autm],, with thiolated nucleosides, 6-mercaptopurine (6-
MP), 6-mercaptopurine-9-3-D-riboside (6-MPR) and 2-amino-6-mercaptopurine-9-3-D-ribo-
side (2-A-6-MPR) has been studied by 'H and '*C NMR spectroscopy. It has been observed
that these thiolated purine bases break the [Autm], polymer and form complexes of the type
[\C=S-Au-tm]. The major shift in '*C NMR occurs in C-6 resonances of the bases when they
react with [Autm],. This is indicative of Au(I) binding with these bases through the sulfur atom
only. In the case of 6-MP, it was observed that at pD 12, the N-9 proton is deprotonated
causing a downfield shift in the C-8 resonance. However, coordination of Au(I) with N-9 or N-7
was not observed. Also, at its higher concentration thiomalate was ejected as a free ligand and
due to its oxidation, thiomalic disulfide resonances were observed suggesting that it could
behave as a thiolate ligand to gold(I). In cases of 6-MPR and 2-A-6MPR, no free thiomalate
resonances in '*C NMR were observed even at higher concentrations of these bases indicating
that thiomalate was not released from [Autm],. At the 2: I ratio of 6-MP to [Autm],,, the by, b,
and bs resonances of [Autm], separated into two peaks indicating the existence of two geo-
metrical isomers for the complex, 6-MP-Au-tm.

Keywords: Gold(I) thiomalate; 6-mercaptopurine; 6-mercaptopurine-9-3-D-riboside; 2-amino-
6-mercaptopurine-9-3-D-riboside; *C NMR

INTRODUCTION

The thio analogues of the purine bases, 6-mercaptopurine and 2-amino-6-
mercaptopurine are among the most active anti metabolites and their
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ribosides are known to exhibit antitumor activity [1, 2]. Mercaptopurine and
its riboside are anticancer metabolites, clinically effective against human
leukemias [3]. These thiolated compounds have seen only limited use in
therapy as single agents. However, some metal complexes of purine thiones,
especially those of Pt and Pd, show antitumor activity [4]. Some gold(I)
purine-6-thiolate complexes are also shown to possess antiarthritic activity
[5]. Cu™? complexes of 6-mercaptopurine are also reported to possess
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FIGURE 1 Structures of [Autm],, 6-mercaptopurines and [tm], and their resonance
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anti-inflammatory activity, a property that is in common with gold(I)
thiolate drugs [6].

6-Mercaptopurine and 2-amino-6-mercaptopurine, and their ribosides are
known to form complexes in solution with several metals, for example Pt(II)
[1], Co(I1) [7], Hg(I) [8], Cudl) [6], Au(I) [5,9], Mo(II) [10], Rh(III),
Ru(IIl) and Ir(I) [3] etc. The antiarthritic drug disodium aurothiomalate
(Myocrisin), [Autm],, exists as a polymer in the solid state as well as in
solution [11, 12]. However, in the presence of other thiols, RSH, it undergoes
exchange reactions forming [Au(SR),]~ type complexes [13, 14] while with
thiones it was observed to form [JC=S-Au-tm] type complexes [15, 16]. In
the present study the interactions of [Autm],, with 6-mercaptopurine (6-MP),
6-mercaptopurine-9-3-D-riboside (6-MPR) and 2-amino-6-mercaptopurine-
9-3-D-riboside (2-A-6-MPR) were investigated by 'H and '’C NMR
spectroscopy. The structures of these ligands, [Autm],, and [tm], are shown
in Figure 1. The mercaptopurines and their ribosides are known to exist as
thiones in the solid state as well as in aqueous solution at room tempera-
ture, while heating favours the thiol form [3]. It would be of interest to
investigate whether these mercaptopurines act as anions, thiolates or as
thiones. We show for the first time that two geometrical isomers are possible
for the complex 6-MP-Au-tm, formed by 6-MP after interacting with
[Autm],.

EXPERIMENTAL SECTION

Chemicals

Gold(I) thiomalate was obtained from ICN K & K Labs. 6-MP, 6-MPR 2-
A-6-MPR, NaOD and DCI were obtained from Fluka Chemical Co. All
chemicals were used without further purification.

pH Measurements

All pH measurements were made at 23°C with a Fischer Accumet pH meter,
model 630. The pD indicates the actual meter reading for D,O solutions
with no correction for deuterium isotope effects. A pD higher than
physiological pH was selected, because in each case precipitation occurs as a
result of addition of thionucleosides to [Autm], solution, and they dissolve
only at higher pH. The pD was adjusted using DCl and NaOD. The pDs of
all the solutions are given in Tables I and II.
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'"H NMR Spectroscopy

"H NMR spectra were obtained on a Jeol INM-LA500 NMR spectrometer
operating at the frequency of 500 MHz. The conditions were 32k data
points, 1.50s pulse delay, and 6.20us pulse width. Observed proton
chemical shifts for thiolated bases with and without addition of [Autm],
are given in Table I. "H NMR spectra were assigned according to the
references given in the literature [13, 17].

13C NMR Spectroscopy

13C NMR spectra were obtained on the same spectrometer operating at the
frequency of 125MHz with '"H broadband decoupling at 297K. The
conditions were 32k data points, 1.00s pulse delay, 4.50 pus pulse width and

TABLE I 'H Chemical shifts of thiolated purine bases with and without addi-
tion of [Autm], in D,O

RS:[Autm], pD H8 H-2 H-V

RS=6-MP

1:0 9.96 8.07 8.17

1:0 12.00 7.84 8.04

1:2 9.95 8.11 8.30

1:1 11.45 7.59 8.32

15:1 1115 7.94 8.12

2:1 10.96 7.92 8.11

RS =6-MPR

1:0 10.12 8.18 8.15 5.92
5.90

1:2 7.40 8.29 8.19 5.95
5.94

1:1 8.67 8.26 8.18 5.13
5.91

1.5:1 10.75 8.21 8.15 5.90
5.89

2:1 10.35 8.20 8.14 5.89
5.88

RS=2-A-6-MPR

1:0 11.30 7.80 5.69
5.71

1:2 8.20 7.88 5.71
5.72

1:1 9.50 7.89 5.69
5.71

15:1 10.55 7.85 5.73
5.72

2:1 10.87 7.84 5.71

572
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TABLE III  '3C Chemical shifts of [Autm], with and without addition of bases in D,O

[Autm],,: RS PD* by by b3 by

1:0 6.93 47.66 48.01 181.70 179.24

RS =6-MP

2:1 9.95 43.73 48.02 184.88 181.34

1:1 11.45 43.74 48.14 185.05 181.22

1:1.5 11.15 4391 48.14 185.28 181.26
43.73 48.03 185.14

102 10.96 4389(41.14)  48.04(54.14) 185.31(180.26)  181.28

43.74(41.23) 48.14(54.49) 185.18 (179.50)*

RS=6-MPR

2:1 7.40 - 47.82 - 179.85

1:1 8.67 43.77 48.08 185.17 180.95

1:1.5 10.75 43.76 48.08 185.08 181.09

1:2 10.35 43.78 48.10 184.99 181.19
44.17

RS =2-A-6-MPR

201 8.20 43.46 47.86 185.15 180.53

101 9.50 43.69 48.03 185.10 181.19

1115 10.55 43.72 48.10 185.15 181.10

1:2 10.87 44.09 48.11 185.15 181.16
43.74

# From pH 6 to 12 there is no change in chemical shift of [Autm], [19].
* Values in parentheses are for (tm),.

with an average of 20000 accumulations. The chemical shifts were measured
relative to internal reference dioxane, which is at 67.40 ppm from TMS. *C
chemical shifts were assigned according to the references reported earlier in
the literature [7, 8, 18]. '3C NMR were recorded after successive addition of
ligands to [Autm],. The observed chemical shifts of various resonances for
the ligands and their complexes with Au(I) are summarized in Table II.
Changes in [Autm], resonances on addition of purine ligands are given in
Table III. It should be noted that [Autm], resonances are not affected by
changing pH from 6 to 12 [19].

RESULTS

Interaction of [Autm], with 6-MP

The '>C NMR spectrum of an 0.05 M solution of [Autm], in D,O at pD 6.93
is shown in Figure 2 (g; and g, are the CH and CH, resonances of glycerol
respectively [15, 16]). Figures 3a and b shows the '*C NMR spectrum of an
0.05M solution of 6-MP in D,O at two different pDs. When 0.50
equivalents of 6-MP were added as solid to an 0.05M [Autm], solution at



14: 08 23 January 2011

Downl oaded At:

92 b1&b2

b4 1
b3 9
\
/[—ﬁ T T T T T T
180 50
§ (ppm)

FIGURE 2 The 125MHz *C {'"H} NMR spectrum of 0.05M [Autm], in DO at pD 6.93.
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FIGURE 3 The 125 MHz '3C {"H} NMR spectrum of 6-MP : [Autml], at various mol ratios in
D,0: (a) and (b) 0.05:0, (c) 0.025:0.05, (d) 0.05:0.05.
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pD 10, only the C-2 resonance was observed. C-4 and C-8 resonances were
less intense compared to C-2; C-5 and C-6 resonances did not appear. The
b; resonance of Autm shifted from 47.66 ppm to 43.73 ppm, while by and by
were broadened as shown in Figure 3c. The chemical shifts of 6-MP were
observed to be pD dependent (Tab. II). It was observed that at pD 12, C-8,
C-4 and C-5 were shifted downfield because of the removal of the proton
from N-9 (Fig. 3b). The chemical shift changes on further additions of
6-MP to [Autm], solutions are compared with the chemical shifts of the
base at pD 12.

On addition of 1.0 equivalent of 6-MP to the above solution at pD 11.50,
the C-6 resonance shifted upfield by 3.40 ppm. C-2 remained unshifted and
increased in intensity. C-4 and C-8 shifted downfield but they were less
intense. The C-5 resonance shifted upfield by about 2.36 ppm. The
thiomalate resonances became more distinct (Fig. 3d). At a ratio of 1:1.5
of base to [Autm], the C-2, C-6, b;, by and b, resonances became more
intense. The C-4 resonance was suppressed due to the broadening of the C-8
resonance. C-5 became more intense. At a 2: 1 ratio of base to [Autm],, the
C-6 resonance became more intense. C-4 and C-8 were broadened due to
exchange between free and bound ligand. Resonances due to thiomalic
disulfide, (tm), also appeared at 41, 54, 179 and 180 ppm (d,, d;, d4 and dj

bs

3o |

T T ! l ”rr T T

186 184 182 180 55 45 40

6 (ppm)

FIGURE 4 The 125MHz '*C {'"H} NMR spectrum of 6-MP : [Autm], at 2: 1 ratio at pD 10.96
(only [Autm], and (tm), resonances are shown).
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respectively) [20] (Fig. 4). Splitting of by, b, and bs resonances of thiomalate
into two peaks showed that there is a possibility that 6-MP could form two
geometrical isomers on interaction with [Autm], (Fig. 4).

Interaction of [Autm],, with 6-MPR

Figure 5a shows the '*C NMR spectrum of an 0.05 M solution of 6-MPR in
D,0O at pD 10.12. On addition of 0.50 equivalents of the base to an 0.05M
[Autm], solution, only C-6 and C-8 resonances appeared. C-8 shifted upfield

(c)
pD=8.67 2
c-8
t3 b4 c-6 c5 / :
(b)
pD=7.40
c-6 8
c2

cl'
\

b2

bl

b2

MJWW-»

c5
~

dioxane

W
T T ‘I T T
175 150 125 75 50
§ (ppm)

FIGURE 5 The 125MHz *C {'"H} NMR spectrum of 6-MPR : [Autm], at various mol ratios

in D,0: (a) 0.05:0, (b) 0.025:0.05, (c) 0.05:0.05.
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by 1.1 ppm and C-6 by 7.1 ppm. The [Autm], resonances remained broad
except for b, (Fig. 5b). When 1.0 equivalents of 6-MPR was added to the
above solution, the C-6 shifted 10 ppm further upfield. C-8 and C-4 shifted
downfield by 1.2 ppm and C-5 shifted upfield by 2 ppm (Fig. 5c¢). There was
no significant change for the C-2 resonance. As the ratio of base to [Autm],
was increased to 1.5:1 and 2: 1, all resonances except that of C-2 remained
broad showing exchange between free and bound ligand. C-6 shifted
downfield towards the free ligand at higher concentrations of base. The b,

(c)
pD=9.50 b2
bl
oy
g2
(b) pD=8.20
|
g b2
c4 C8B 5 bl
MM)MW-*//W gt \ A
C c2' ¢5
" e3/0 |/
(a) pD=I11.30 dioxane
L adat i tins aea i
]
T ] T l T 1 T I '[ T T T T ‘ I[T T T I l T T T T | T T
175 150 125 75 50
§ (ppm)

FIGURE 6 The 125MHz '3C {'"H} NMR spectrum of 2-A-6-MPR : [Autm], at various mol
ratios in D,O: (a) 0.05:0, (b) 0.025:0.05, (c) 0.05:0.05.
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and b; resonances of thiomalate appeared more clearly. The b; resonance
split into two peaks, attributed to the isomeric CH carbon of thiomalate.

Interaction of [Autm], with 2-A-6-MPR

Figure 6a shows the '3*C NMR spectrum of an 0.05M solution of 2-A-6-
MPR in D,O at pD 11.30. Upon addition of 0.50 equivalents of 2-A-6-MPR
as solid to an 0.05 M [Autm], solution, the C-6 and C-2 resonances were not
observed. The C-5 resonance shifted upfield by 2.39 ppm and decreased in
intensity. The other two resonances, C-4 and C-8 appeared as sharp peaks.
The b, resonance of thiomalate became sharp and b; shifted upfield from
47.66ppm to 43.46ppm; the bz resonance shifted downfield from
181.70 ppm to 185.15 ppm (Fig. 6b).

At a 1:1 ratio of base to [Autm], (Fig. 6¢) the C-2 resonance remained
unchanged. C-4 resonance shifted downfield by 1.1 ppm and C-5 resonance
shifted upfield by 1.8 ppm; C-6 resonance shifted upfield by 17.5 ppm and
the C-8 resonance shifted downfield by 1.0 ppm. All the [Autm],, resonances
appeared clearly and became more intense. At higher concentrations of the
base (1.5 and 2.0 equivalents) all peaks except for C-2 were broadened
indicating exchange between free and bound nucleoside. All the thiomalate
resonances became sharp, indicating that the thiomalate was replaced by the
nucleoside. At a ratio of 1.5: 1 of base to [Autm],, the C-6 resonance shifted
a little downfield due to the equilibrium between free and bound ligand. C-2
and C-8 resonances were almost unaffected. Other resonances were very
much broadened. At a ratio of 2:1 of base to [Autm], the C-6 resonance
shifted further downfield by 2 ppm, indicating exchange between free and
bound base. The b; resonance split into two resonances due to two isomeric
forms of the complex 2-A-6-MPR-Au-tm.

DISCUSSION

Gold(I) is found in AuS, coordination environments for the various types of
gold(I) thiolate complexes [21 —23]. When excess thiol such as cysteine and
glutathione are added to [Au(SR)], polymers, they usually eject thiomalate
by forming [Au(thiolate),] ~ species [14, 22, 24]. However, when thiones such
as ergothionine [25], Imt (imidazolidine-2-thione) and Diaz (1,3-diazinane-
2-thione) [15, 16] are added to [Autm], solution, usually a ternary complex
of the type [)C=S-Au-tm] is formed without ejecting thiomalate. In the
present study, when mercaptopurines (which are soluble only at high pD)
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were added to the [Autm], solution, no free thiomalate was released from
[Autm], at a ratio of 1:1 suggesting that they do not bind as strongly as
thiolates and they coordinate in the form of thiones. However, in the case of
6-MP, at ratios 1.5:1 and 2:1 of 6-MP to [Autm],, less intense thiomalic
disulfide, (tm), resonances are observed (Fig. 4) indicating that thiomalate is
released from [Autm], as a free ligand and is consequently oxidised to
thiomalic disulfide, (tm), [20]. Since free thiomalate [26] or (tm), resonances
are observed [13,14] on interaction of [Autm], with thiols, there is a
possibility that 6-MP could bind to Au(I) as a thiolate ligand in addition to
the thione form. Cookson efr al. [5] reported several gold(I) complexes
showing that 6-MP coordinates as a thiolate ligand. For 6-MPR and 2-A-6-
MPR it is suggested that they bind to Autm only in the thione form, since no
(tm), resonances are observed on their addition to [Autm],.

For 6-MP at a 2: 1 ratio of 6-MP : [Autm],,, the [Autm],, resonances, by, b,
and bjs split into two resonances showing that 6-MP forms two geometrical
isomers when bound to [Autm],. The structures of these two isomers are
shown below;

H

| |
_Au—S—C—CO,Na NaOZC—C—S—Au\S_'D

Q

CHZ—COZNa NaOZC—CHz

_——

In the isomer in which the Autm moiety is oriented towards imidazole
ring, I, b, should appear downfield because the b, carbon atom of
thiomalate is nearer to the more electronegative nitrogen atom of the
aromatic ring. The peak intensities in '*C NMR show that form I is less
populated than II (Fig. 4). For 6-MPR and 2-A-6-MPR only b, is separated
into two resonances while for b, and bs this splitting is not observed. This is
the first example in which two isomers are observed in the '*C spectrum of
[Autm], on its interaction with thiones. However, such isomers have been
reported for several platinum complexes [27, 28].

The thiolated purines are all ambidentate ligands, since they offer a
multiplicity of potential binding sites, such as nitrogen and sulfur. In metal
complexes they could act as monodentate ligands through sulfur or as S-6/
N-7 chelating ligands [29]. In case of Au(I) and Hg(II) they coordinate
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through sulfur [8,9] while chelating mode is observed in Ru(II) [30, 31],
Co(II) [7], Cd{I) [29] and Au(IIl) [32] complexes. In case of Hg(II)
interaction with 2-A-6-MPR, it was observed that the }C=S carbon
underwent a shift of 15.1 ppm indicating binding of only sulfur to Hg(II) [8].
In the present study, the largest chemical changes in '*C NMR of all the
bases occur at C-6 providing clear evidence for selective binding via the
sulfur atom. This is consistent with the stronger binding expected between a
class b (soft metal) such as gold(I) and a softer sulfur ligand. The carbon
atom of the }C=S group undergoes a shift of up to 17 ppm upon formation
of the Au-S bond in 6-MPR and 2-A-6-MPR, while in 6-MP the shift is
3.40 ppm (Tab. II). There was no significant shift for the C-8 position during
the reaction, indicating that N-7 is not involved in coordination to [Autm],.
Ribose hydroxyl groups do not participate in binding since their resonances
remained unshifted.

In the '"H NMR the signals near 8 ppm are due to the H-2 and H-8
protons of the free ligands and a doublet around 6 ppm is due to the
anomeric proton of ribose [1, 3]. It is observed that in 6-MP, H-2 appears
downfield as compared to H-8, while the opposite trend is found in 6-MPR
(Tab. I). Complex formation of thiopurines with a metal should cause a
downfield shift of the aromatic ring protons, nearest to the metal. This has
been attributed to m electron redistribution on protonation or complex
formation [33,34]. For complexes of thiolated bases where coordination
occurs through N-7, the proton at C-8 shifts more downfield than the others
and becomes less intense [9]. The present study shows that in the "H NMR
spectra of all the complexes the H-2 protons are shifted a little downfield
with respect to the free ligands but shifted again upfield on addition of
excess ligand. The H-2 signal also becomes less intense while the intensity of
H-8 is not affected by addition to [Autm],. Since the shift in H-8 is very
small, it can be concluded that N-7 is not involved in binding. For 6-MP
the H-8 signal shifted upfield at pD 12, suggesting deprotonation at N-9.
N;H-H-2 coupling has not been observed in the NMR spectra, which may
be due to rapid proton exchange. All exchangeable protons (NH, SH and
NH,) disappear.

In the case of 6-MP, it was observed that at more basic pD, C-8 is
significantly shifted downfield indicating that deprotonation occurs at the
N-9 position. Such a downfield shift upon deprotonation was also observed
in 6-MP complexes of Mo(II) [10]. It has also been observed that on
addition of a base to a solution of [Ru(6-MP),{P(CsHj5);}]Cl, the H-8 signal
in "H NMR is most affected, consistent with N-9 deprotonation [30]. The
pK., value for N-9 deprotonation is reported to be 9.1, while for N-1, it is 2.2
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TABLE IV Difference in '*C NMR chemical shifts (A) in
ppm of the }C=S resonance of the thione at a 1:1 ratio of

RS:[Autm],

RS pD A Reference
6-MP 11.45 3.40 This work
6-MPR 8.67 17.66 This work
2-A-6-MPR 9.50 17.54 This work
2-Thiouracil 10.50 3.63 36
Ergothionine 7.40 2.99 25
Imt 7.40 2.55 16
Diaz 7.40 2.05 16

[35]. Since the C-8 resonance is not significantly shifted when 6-MP is added
to [Autm], at higher pD, it is suggested that N-9 is not involved in
coordination and Au(I) binds only through sulfur.

In previous studies of interaction of [Autm],, with thiones by '>’C NMR, it
has been observed that 2-thiouracil, Imt (imidazolidine-2-thione) and Diaz
(1,3-diazinane-2-thione) form a ternary complex of the type [)C=S-Au-tm]
without ejection of tm~ as a free ligand [15,16,36]. In these cases the
chemical shift differences between the free thione and the complex ata 1:1
ratio of RS :[Autm], are 3.64, 2.55 and 2.05 ppm, respectively, whereas in the
present case it is found to be around 17 ppm for 6-MPR and 2-A6-MPR,
and 3.40 ppm for 6-MP. A comparison of the '*C chemical shifts of the
carbon atom attached to the coordinating sulfur atom of various thione
ligands at the 1: 1 ratio of thione : [Autm], is given in Table IV. It is observed
that the thiolated bases bind more strongly than simple thiones with gold(I).
From this interaction it is clear that thiolated bases only form [RS-Au-tm]
complexes and excess base exchanges with bound ligand.
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